A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Ian Watson*, Zakir Khan, Prashant Kamble, Zoraima Arias, Kozue Kanaizuka, Kunio Yoshikawa, Georgi Tsonev, Mazin Farooq, Michael Gillespie, James Sharp

ian.watson@Glasgow.ac.uk
Reader in Applied Energy

EPSRC Contract Number, EP/M01343X/1
Contents

Introduction
Downdraft gasification system
Online tar detection system
Instrumentation and control
Results
Conclusions
References
Problem, potential solutions and strategy

Tar formation
- Operate on the minimum tar production point
- Need a tar detection system
- Must be robust and inexpensive

Biomass variety
- Feedstock
- Blending
- Pretreatment

Real time control
- Inexpensive, robust

LCA, Techno-economic analysis
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Real time control of gasification processes to increase tolerance to biomass variety and reduce emissions

EPSRC SUPERGEN Bioenergy Challenge II
March 2nd 2015 – August 2018

Aims
• To investigate the effect of biomass harvest and pretreatment variables on gasification efficiency and output greenhouse gas and particulates
• To develop control systems to broaden the scope of biomass input into the system, reduce tar formation and optimize the syngas quality.

Scope
• Development of gasification systems (Glasgow/Aston))
• Modelling gasification processes (Glasgow/Aston)
• Real time control and instrumentation of gasification system (Glasgow/Aston)
• Robust and inexpensive tar detection system (Glasgow/Aston)
• Assess impact of biomass variety and pre-treatment (Aberystwyth)
• Techno-economic analysis and Life cycle assessment (LCA) (Manchester)
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Academic:
University of Glasgow: Ian Watson, James Sharp, Nader Karimi, Manosh Paul, Zhibin Yu, Peter Hastie, Paul Younger, Zakir Khan, Prashant Kamble

Aston University: Tony Bridgwater, Paula Blanco, Xi Yu

Aberystwyth University: Iain Donnison, Jon McCalmont, John Corton

Manchester University: Paul Gilbert, Chen-wei Chang

Industrial support:
Uniper
gf consulting
Downhole Energy
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Gasification System
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Gasification System

Data monitoring and control
Gasifier and hot gas filter
Space for tar detection
Condenser
Gas flowmeter
Tar collection
Exhaust
Gas analyser
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Gas Composition

ER = 0.30

Gas Composition (%)

Time

CH4 (%) CO (%) CO2 (%) O2 (%) H2 (%) N2 (%)
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Tar Detection-Fluorescence

Phenol and Bio-oil detection (Liquid phase, offline)

- Phenol sample in cuvette
- Long pass filter
- LED
- PMT
- Water Sample

Graphs showing the relationship between sample phenol concentration and photomultiplier output voltage, and the percentage of gasifier oil in a sample and photomultiplier output voltage.
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Tar Detection-Fluorescence
Online Tar Detection System (Gas phase)
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Instrumentation and Control

Optimus Prime: Version 1 (Present)
1) Three 20*4 Character LCD

Optimus Prime: Version 2 (Progressing)
1) Touch Screen
2) Sensors: 12-thermocouple, 2-weight load, 1-airflow, 1-Mass flow controller, 1-liquid flow, 2-Pressure,
 Controlling through mobile or Wi-Fi.
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Gasification Temperature Profile (ER 0.30)
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Gasification Temperature Profile (ER 0.25)
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

Arduino based mass (air) flow sensor (ER 0.25)
A gasifier test bed for analysing on-line tar detection and control systems for enhanced gasification performance

What next? Automatic Control System

- K-type thermocouple with Max31855 amplifier (Tempcon, -200 to +1350 °C)
- Liquid flow sensor (Sourceing, 1-30 L/min)
- Air flow sensor (Sourceing, -200 to +200 L/min)
- Pressure Sensor (Eldor, 0 to 1.2 MPa)
- Debugging screen with HD44780 (Gaoxing Tech., 20*4)
- Microcontroller Arduino Mega ADK
- Weight sensor with HX711 amplifier (Seedstudio, 0 to 50Kg)
- Heating tape Control
- Gas Analyser
- Red-Y Air flow controller
Conclusion

- Instrumentation completed
- Data logging completed
- Control strategy developed
- Experiments on feedstock and output fluctuations in progress
- System errors
- Tar detection system assembled and being calibrated against tar standards