UPDATE OF PETCOKE GASIFICATION PROJECT
AT JAMNAGAR, INDIA

THOMAS MATHEW AND NITIN KARVEKAR

6th December 2017 Reliance Industries Ltd New Delhi
Any statement, opinion, prediction, comment, or observation made in this presentation/publication are those of the presenter/author only and in no condition should be construed necessarily representing the policy and intent of Reliance Industries Ltd. (RIL).

The information presented herein are of the presenter/author’s own and in no way RIL attracts any liability for any inconsistency or irregularity in terms of the accuracy completeness, veracity, or truth of the content of the presentation/publication. In addition, RIL shall not be liable for any copyright infringement and misrepresentation for the presented content as the content is presumed in good faith to be a creation of presenter’s/author’s own mind.

The scope of this presentation/publication is strictly for knowledge sharing purposes and not necessarily to provide any advice or recommendation to the audience/readers. Any endorsement, recommendation, suggestion, or advice made by the presenter/author shall be in his personal capacity and not in professional capacity as an employee of RIL. Any person acting on such endorsement, recommendation, suggestion, or advice will himself/herself be responsible for any injury/damage.

© Reliance Industries Ltd.
Index

• Reliance & Jamnagar refinery
• Petcoke gasification
• Base syngas utilization
• Project details and Status
• Technology Challenges & Operational Preparedness
• Future syngas utilization
• Conclusion
Reliance – An Introduction

Growth Journey

- 1958: Reliance Commercial Corporation – Trading House
- 1966: Naroda Textile Units – Vimal Fabric
- 1977: Reliance goes Public – Reliance IPO
- 1982-88: Patalganga Complex – POY/ PSF/ PTA/ LAB/ PX
- 1997-97: Hazira Phase II- PTA 1,2/ PFY/ PSF/ PET/ PP/ Naphtha Cracker
- 1999-00: Jamnagar DTA Refinery (J1)
- 2000-01: Reliance Info-comm
- 2005-06: Reliance Retail
- 2008-09: Jamnagar SEZ Refinery (J2)/ KGD6 Gas Production
- 2016-17: J3 Project Implementation: Gasification Project & Jio 4G

Make-in-India & Digital India
Reliance: An Introduction

Reliance Industries Ltd, India

- **#1 company in India**, in private sector
- **Global rankings**, (Fortune 2017)

 #203 in revenues; #110 in profits

- **Performance**, FY ’17

<table>
<thead>
<tr>
<th></th>
<th>$bn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>50.9</td>
</tr>
<tr>
<td>Earnings, EBDIT</td>
<td>8.6</td>
</tr>
<tr>
<td>Market capitalization</td>
<td>90</td>
</tr>
<tr>
<td>Net worth</td>
<td>44.5</td>
</tr>
</tbody>
</table>

- **Growth**, CAGR (1)

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings</td>
<td>26.7</td>
</tr>
<tr>
<td>Market capitalization</td>
<td>31.5</td>
</tr>
<tr>
<td>Net worth(NW)</td>
<td>13.9</td>
</tr>
</tbody>
</table>

- **Returns** (adjusted) (2)

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCE</td>
<td>25.4</td>
</tr>
<tr>
<td>RONW</td>
<td>16.8</td>
</tr>
</tbody>
</table>

Note: (1) CAGR = compounded annual growth rate since IPO in 1977
(2) Adjusted for work in progress

⇒ Indian company, with a global footprint
Jamnagar Refinery: A profile

Jamnagar refinery

- **Largest refinery**
 - Crude processed, kb/d: 1380
 - World rank, #: 1

- **Superlative performance**
 - Complexity Index: 12.7
 - Energy Intensity Index: 64
 - Availability, %: ~97

- **Integrated complex**
 - Petrochemicals, % of crude: 14.5
 - Utilities & power, % captive: 100
 - Ports & terminal: 5 SPM + 5 berth jetty

- **Global exports**
 - By revenues, %: 51
 - By volume, %: 56

- **Margins**
 - **GRM, FY’17** USD/bbl
 - Jamnagar: 11.0
 - USGC/WTI: 8.7
 - Singapore/Dubai: 5.8
 - Rotterdam/Brent: 5.3

Note: GRM = Gross refining margin

⇒ Arguably the best refinery in the world
Scope:

- **Refinery**: 4 trains
- **Coker**: 2 x 8 drums
- **Petcoke Gasification**: 10 gasifiers
- **Crude oil**: 1380 kb/d
- **Vac resid**: 340 kb/d
- **Petcoke import**: 6.3 mmt/yr
- **Petcoke**: 4.0 mmt/yr
- **LNG Import**: Syngas @10 GWth, 23.2 mmscm/d NG equiv.
- **Sulphur**: 2000 t/d

⇒ **Gasify petcoke to syngas, for 100% Jamnagar consumption**
SCOPE: Gasification Configuration: BFD

- ASU
- Gasification
- Open Art Units
 - LTGC
 - Shift & GC
 - SWS
- SRU/TGTU
- SFU
- Sulfur
- PSA
- H₂
- Methanation
- SNG
- CPP
- CO₂
- Power
- CO recovery
- Chemic als

Dotted line indicates future vistas

- HHP steam export
- HHP steam
- O₂
- Pet coke
- OSBL
- Offsite
Gasification Configuration:

- **Config**
 - 10 Gasifiers
 - 4 in DTA refinery; 6 in SEZ refinery
 - Modular design, 2 gasifiers /modules

- **Feed**
 - 1,150 MWth gasifier largest in the world
 - 100% petcoke feed, ~2,900 tpd per gasifier
 - 65% petcoke + 35% coal feed blend flexibility

- **ASU**
 - 5 ASU, 1 ASU/ gasifier module
 - 5,250 t/d 99% O_2

- **Product**
 - 2.3 mmscmd NG equiv / gasifier (272 kNm3/hr)
 - Repower 1,300 MW CPP with syngas and 1,700 tph of steam
 - 1,160 t/d H2, 2-4 mmscmd SNG (balancing product)
Project: Scope

Engineering:
- PFD: 115
- P & ID: 1700

Equipment:
- Equipment: 2920
- Piping isometrics: 44,000

Materials:
- Concrete, million cum: 1.1
- Structural steel, kt: 210
- Piping, million in m: 14
- Electrical cable, km: 3900
- Instrumentation cable, km: 6500

Construction:
- Construction workers, peak: >1,000,000
- Cranes, peak: >1700

⇒ Flagship gasification project of the world
CURRENT STATUS

• World’s largest ASU 1 unit commissioned successfully and operational

• First Gasifier unit refractory drying and alkali boil out completed

• All utilities are operational

• AGR unit commissioning under progress

⇒ No compromise on safety
CURRENT STATUS

⇒ No compromise on safety
CURRENT STATUS

⇒ No compromise on safety
CURRENT STATUS

No compromise on safety
No compromise on safety
Operational Challenges: Successful Gasifier operation depends on

- Consistent quality of feed-stock
- Proper blend of fluxant
- Slurry properties like stability, strength, and viscosity (Flowability / Pumpability)
- Life of slurry mixer (burner)
- Gasifier design to provide right volume and temperature
- Slag flow characteristics
- Refractory Life

⇒ No compromise on safety
Technology Challenges

Process Safety

- Handling of Toxic chemicals - Hydrogen Sulphide (TLV 1ppm), Syngas- Carbon Monoxide (TLV – 25 ppm)
- Handling of Flammable & Explosion Hazards- H2, pure Oxygen, methanol,
- Handling of solids - Dust explosion Hazards- Petcoke, coal,

- Conservative designs – compliance to international standards (AIGA/ EIGA)
- Developed standards for handling toxic chemicals
- Detail Consequence Analysis studies of complete complex and action plan

⇒ No compromise on safety
Operational Preparedness:

- Study on effect of fluxant to feed ratio on ash viscosity with temperature – Optimized fluxant to feed ratio

- Study on slurry preparation using optimized fluxant to feed ratio – Optimized slurry stability, strength, and viscosity

- Study using optimized slurry for understanding the reaction kinetics using equipment in entrained flow environment

- Validating scaled up Gasifier design using kinetics and CFD modeling

- A detail work plan prepared. Various teams comprising members from different areas prepared to handle each concerned area.

⇒ Flawless and smooth Start-up
Operational Preparedness

Operational Preparedness:
Tie up with renowned research institutes / Universities:

• Working with Penn State Universities, Micro beam Technology, USA. Planning to collaborate with NETL, Frieberg University, Germany.

• Generate the property data for actual feed stocks and develop correlations for predicting properties

• Generate kinetic data for development of model

• Develop CFD models

Extensive Dynamic simulation study of:

• Gasification module to validate control philosophy provided by licensor

• Control system for all units in Gasification complex individually and integrated way

• Control system of Gasification complex with rest of the Jamnagar complex

• Extensive use of OTS for operational training

⇒ Flawless and smooth Start-up
Gasification: Future Enhancements

| NH₃ | Recover NH3 @ 140 kt/yr from sour water
| | 43% from gasification + 57% from refinery
| | Convert N, a crude contaminant, into an opportunity
| | Substitute imports, into India

Urea
- Exploit pure CO₂ from gasification shift
- Add CO2 to NH3, recovered + imports
- Boost fertilizer supply + food security of India

V
- Recover vanadium(V) @ 9.5 kt/yr from gasification slag
- Recover Ni @ 2.0 kt/yr as co product
- Convert V, a crude contaminant into a metals opportunity
- Global #1 in V, a micro alloy for high strength steel

Ethanol
- Exploit syngas for synthetic ethanol
- Use biochemical reaction kinetics
- Blend ethanol into crude derived gasoline
- Stretch gasoline without crude increase

APC + RTO
- Develop integrated gasification model
- Model scope = 10 gasifiers + syngas headers
- APC = Advance process control
- RTO = Real time optimization using ROMeo software
- Enhance gasification performance

⇒ **Enhance gasification economics**
Future Syngas Utilization

<table>
<thead>
<tr>
<th>Gasification</th>
<th>Syngas quality @ $H_2/CO = 0.62$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Syngas price @ 40% discount to LNG derived syngas</td>
</tr>
<tr>
<td></td>
<td>Base syngas utilization = $H_2 +$ plant fuel</td>
</tr>
<tr>
<td></td>
<td>Future syngas utilization = Oxygenated chemicals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO</th>
<th>Recover CO from low H_2/CO syngas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exploit low cost CO feed for acetic acid + ethylene glycol</td>
</tr>
<tr>
<td></td>
<td>Derive acetyl chemicals from acetic acid</td>
</tr>
<tr>
<td></td>
<td>Acetates + VAM + VAE + PVAcetate + PVAlcohol</td>
</tr>
<tr>
<td></td>
<td>Ethylene glycol, via unconv.process from CO</td>
</tr>
<tr>
<td></td>
<td>Acrylic acid ,via unconv. process from CO, in future</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syngas</th>
<th>Target chemicals, requiring low H_2/CO syngas as feed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oxo–alcohols + DME + MMA/ PMMA</td>
</tr>
<tr>
<td></td>
<td>Blend DME into crude derived LPG</td>
</tr>
<tr>
<td></td>
<td>Methanol and its derivatives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO_2</th>
<th>CO2 capture ready plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Identify technology for CO2 utilization/sequestration</td>
</tr>
</tbody>
</table>

⇒ Maximize value addition with syngas to chemicals
Global landmark in Gasification

Path-breaker for Indian Energy Sector
Thank You